INVERSE ELASTIC SCATTERING WITH ADAPTIVE FE MESHES

D. AUBRY, A.-L. HAMON AND <u>G. PUEL</u> MSSMAT LABORATORY ECOLE CENTRALE PARIS / CNRS UMR 8579

ΑιΜ

• Numerically model the forming of images in a Transmission Electronic Microscope (TEM)

➡forward problem

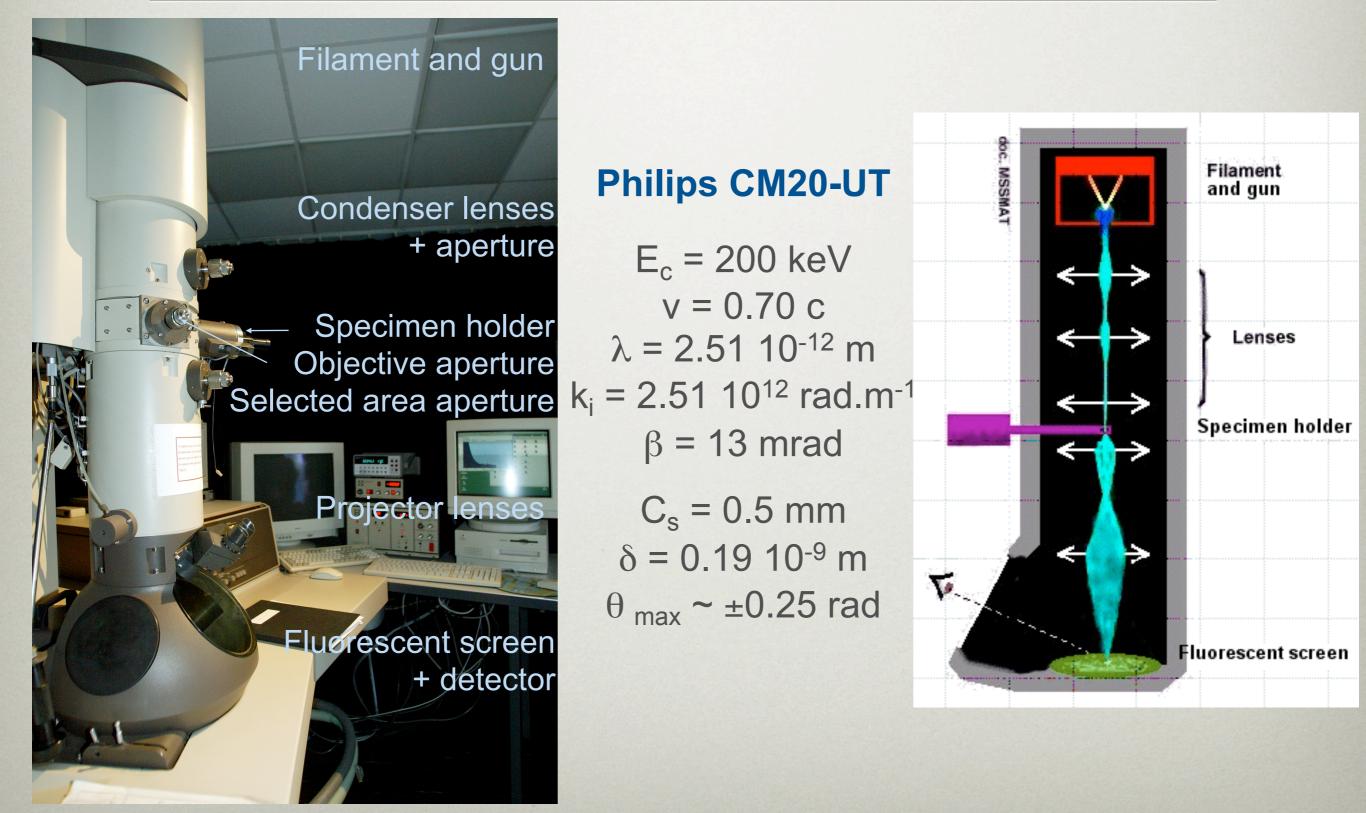
• From given images, identify defects within the studied sample

⇒inverse problem

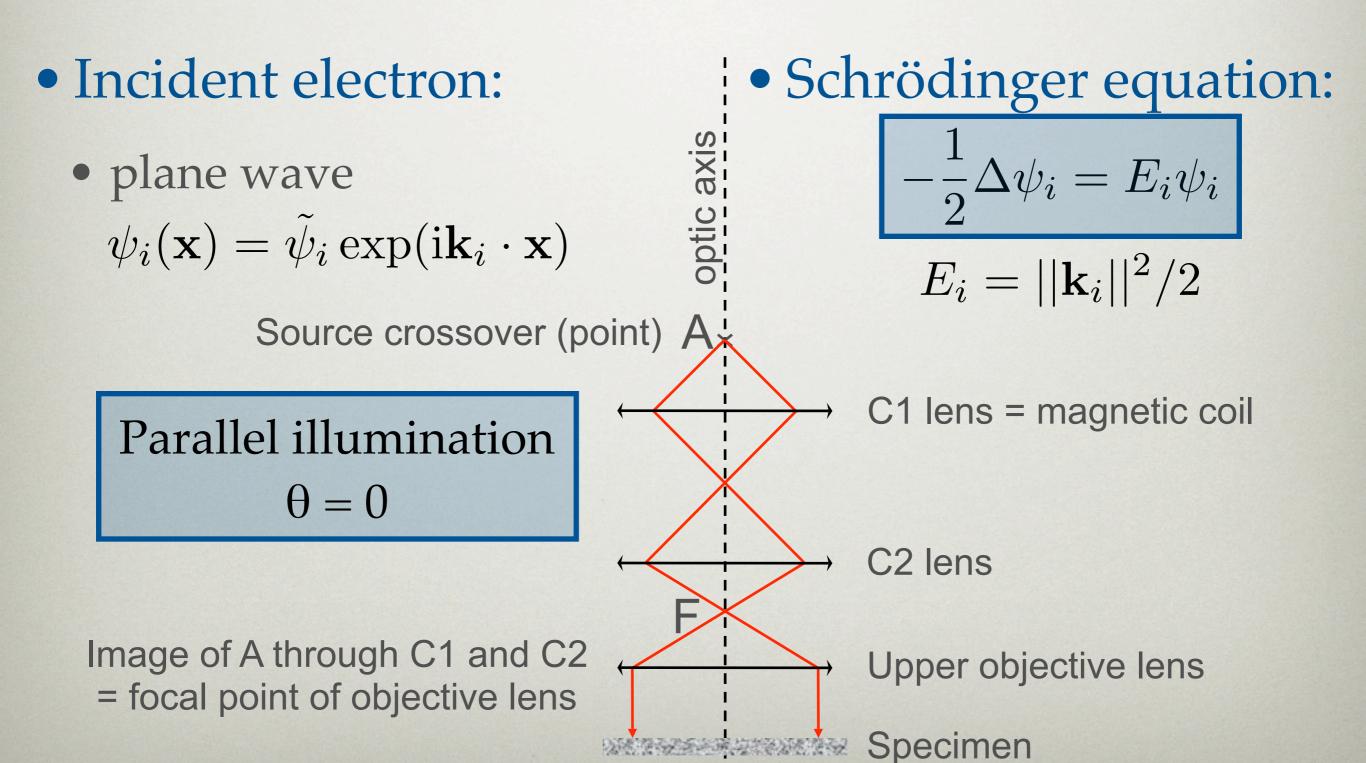
OUTLINE

- TEM forward scattering
 - TEM principles
 - TEM forward scattering
- Inverse scattering
- Results

TEM PRINCIPLES



TEM PRINCIPLES

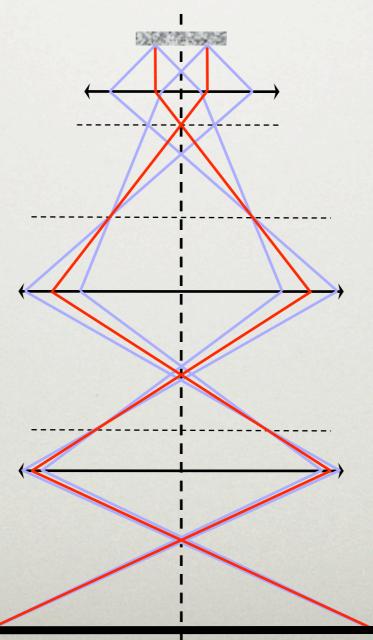


TEM PRINCIPLES

Outgoing wave

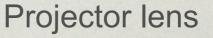
Forming images

- transmitted beam
- diffracted beam (Bragg law)



Specimen

Objective lens Back focal plane ≡ diffraction pattern Image plane ≡ intermediate image Intermediate lens



Screen ≡ final image

TEM FORWARD SCATTERING

- Schrödinger equation:
 - for incident electron only [Wang 1995]
 - assumptions + decompositions $\psi = \psi_i + \psi_d$ — diffracted field
 - paraxial approximation $\psi_d(\mathbf{x}) = \tilde{\psi}_d(\mathbf{x}) \exp(\mathrm{i}\mathbf{k}_i \cdot \mathbf{x})$

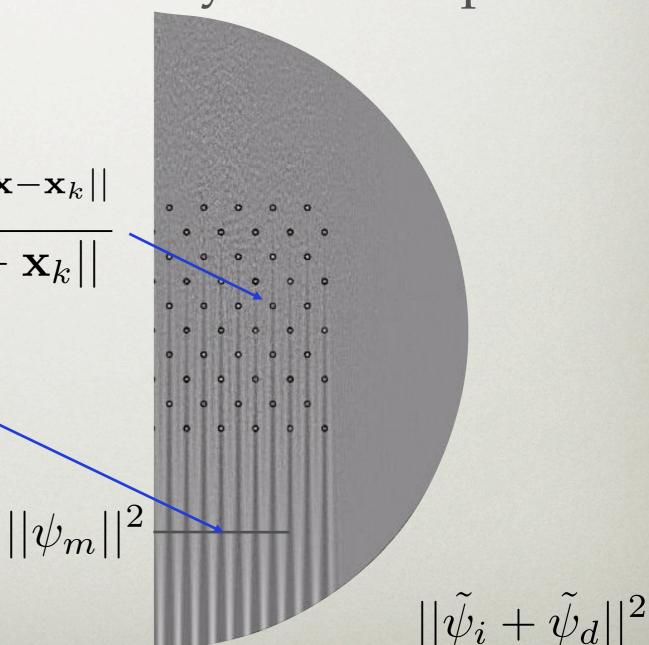
$$\frac{1}{2}\Delta\tilde{\psi}_d + \mathbf{i}\mathbf{k}_i\cdot\nabla\tilde{\psi}_d = V\tilde{\psi}_i \text{ in } \Omega_e$$
$$\frac{\partial\tilde{\psi}_d}{\partial\mathbf{n}} = \mathbf{i}(||\mathbf{k}_i|| - \mathbf{k}_i\cdot\mathbf{n})\tilde{\psi}_d \text{ on } \Sigma_\infty$$

[Popov 2006]

	Ψ_i	^,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\Omega_{ m e}$	$\blacksquare \blacksquare \blacksquare \blacksquare \square \square \Omega_{s}$	
	Σ _m	

EXAMPLE ON α-IRON [011] AXIS

- FE simulation on a 2D very thin sample
 - Yukawa potential for the sample Na Potential for the sample Na V₀(x) = ∑_{k=1}^{Na} K e<sup>-a||x-x_k|| / ||x x_k||
 Wave intensity measured on Σ_m
 ~ 600,000 DOFs
 </sup>



OUTLINE

- TEM forward scattering
- Inverse scattering
 - Inverse problem and misfit functional
 - Adjoint state
 - Two meshes formulation
- First results

INVERSE PROBLEM

- Experimental data:
 - Simulated forward scattering of a sample with defects
 - Intensity on a specific virtual plane Σ_m
- Inverse problem:
 - Search for the unknown potential associated with the measured intensity
 - Find the corresponding defects

MISFIT FUNCTIONAL

• Misfit function [Beilina et al 2005] [Beilina et al 2006] with an additional regularization term

$$J(V) = \frac{1}{4} \int_{\Sigma_m} \left(||\tilde{\psi}_i + \tilde{\psi}_d||^2 - ||\psi_m||^2 \right)^2 + \frac{\alpha}{2} \int_{\Omega_v} (V - V_0)^2$$

V₀: potential of the crystal with no defects

ADJOINT STATE

• Similar to the forward problem

$$\frac{1}{2}\Delta z + i\mathbf{k}_{i}^{*} \cdot \nabla z = 0 \text{ in } \Omega_{e}$$
$$\frac{\partial z}{\partial \mathbf{n}} = -i(||\mathbf{k}_{i}|| + \mathbf{k}_{i}^{*} \cdot \mathbf{n})z \text{ on } \Sigma_{\infty}$$

• [[dz/dn]] discontinuity on Σ_m

$$\frac{1}{2} \left[\left[\frac{\partial z}{\partial \mathbf{n}} \right] \right] = \left(||\tilde{\psi}_i + \tilde{\psi}_d||^2 - ||\psi_m||^2 \right) (\tilde{\psi}_i + \tilde{\psi}_d) \text{ on } \Sigma_m$$

COMPATIBILITY CONDITION

• Derivative of the misfit function

$$\delta J = \int_{\Sigma_m} \left(||\tilde{\psi}_i + \tilde{\psi}_d||^2 - ||\psi_m||^2 \right) \operatorname{Re} \left((\tilde{\psi}_i + \tilde{\psi}_d) \delta \tilde{\psi}_d^* \right) + \alpha \int_{\Omega_v} (V - V_0) \delta V = \int_{\Omega_v} - \operatorname{Re}(\tilde{\psi}_i z^*) \delta V + \alpha \int_{\Omega_v} (V - V_0) \delta V$$

$$\operatorname{Re}(\tilde{\psi}_i z^*) = \alpha (V - V_0) \text{ in } \Omega_e$$

V₀: potential of the crystal with no defects

NUMERICAL RESOLUTION

Forward pb.

$$\frac{1}{2}\Delta\tilde{\psi}_{d} + \mathbf{i}\mathbf{k}_{i} \cdot \nabla\tilde{\psi}_{d} = V\tilde{\psi}_{i} \text{ in } \Omega_{e}$$

$$\frac{\partial\tilde{\psi}_{d}}{\partial\mathbf{n}} = \mathbf{i}(||\mathbf{k}_{i}|| - \mathbf{k}_{i} \cdot \mathbf{n})\tilde{\psi}_{d} \text{ on } \Sigma_{\infty}$$

$$\frac{1}{2}\Delta z + \mathbf{i}\mathbf{k}_{i}^{*} \cdot \nabla z = 0 \text{ in } \Omega_{e}$$
Adjoint pb.

$$\frac{\partial z}{\partial\mathbf{n}} = -\mathbf{i}(||\mathbf{k}_{i}|| + \mathbf{k}_{i}^{*} \cdot \mathbf{n})z \text{ on } \Sigma_{\infty}$$

$$\frac{1}{2}\left[\left[\frac{\partial z}{\partial\mathbf{n}}\right]\right] = \left(||\tilde{\psi}_{i} + \tilde{\psi}_{d}||^{2} - ||\psi_{m}||^{2}\right)(\tilde{\psi}_{i} + \tilde{\psi}_{d}) \text{ on } \Sigma_{m}$$
Compatibility $\operatorname{Re}(\tilde{\psi}_{i}z^{*}) = \alpha(V - V_{0}) \text{ in } \Omega_{e}$

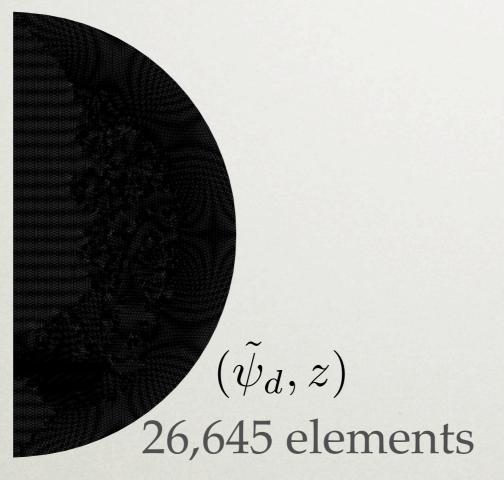
J

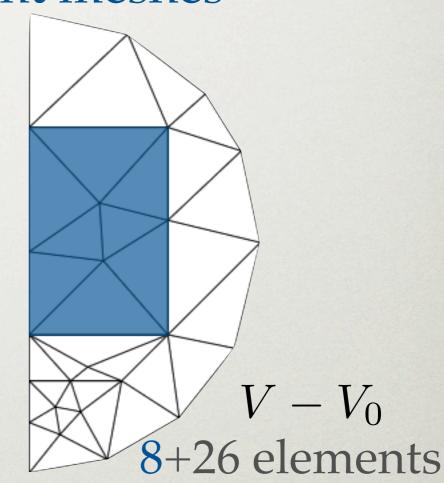
NUMERICAL RESOLUTION

- Problems of convergence:
 - the sought potential is discretized (FE mesh)
 - *n* FE nodes n scalar values to identify
- Possible solutions:
 - restrict the area where the potential is sought
 - use a coarser mesh

ADAPTIVE STRATEGY

Introduction of two different meshes





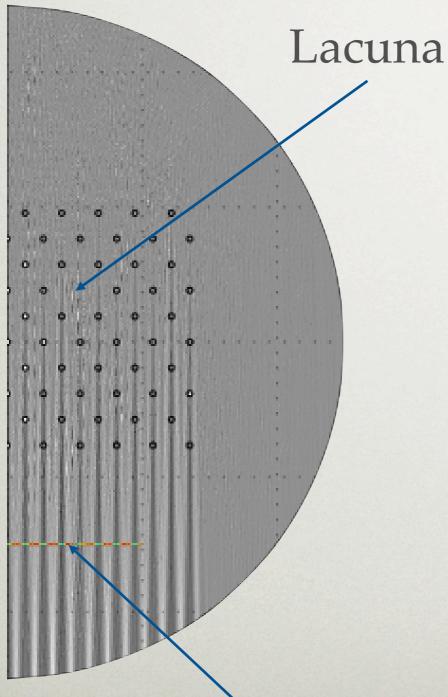
- Adaption of the mesh associated with V-V₀
 - local estimators of the misfit function J [Bangerth 2003]

OUTLINE

- TEM forward scattering
- Inverse scattering
- First results
 - specimen with a lacuna
 - specimen with a slit

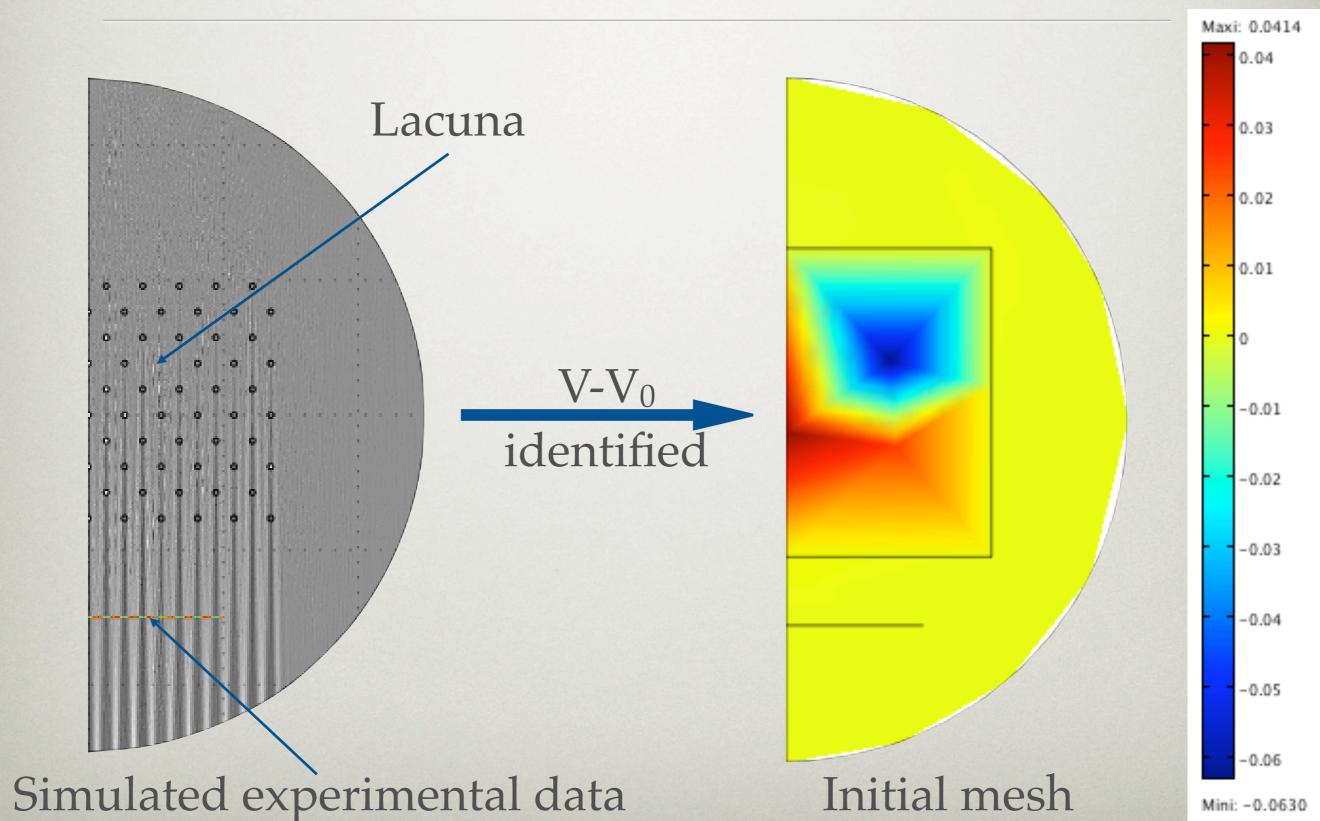
EXAMPLE 1 ON α-IRON: SAMPLE WITH A LACUNA

CIERS



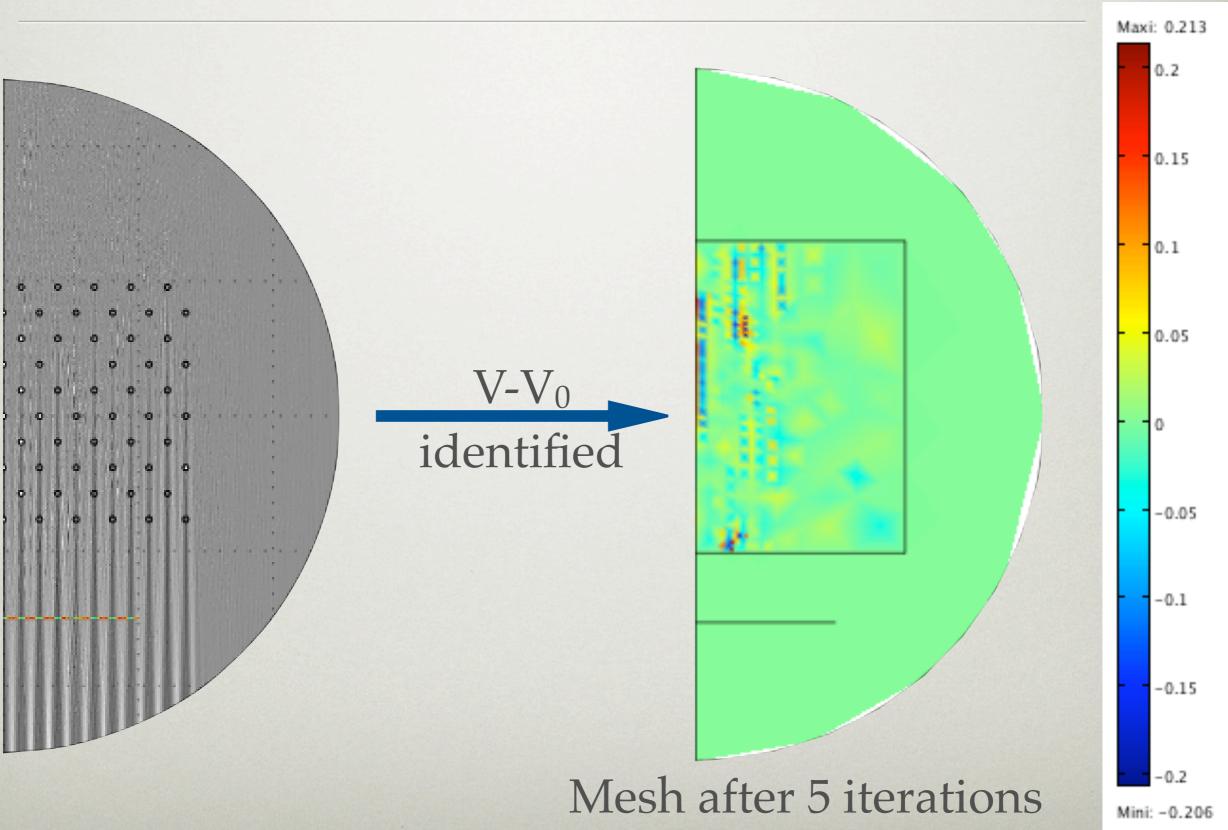
Simulated experimental data

EXAMPLE 1 ON α-IRON: SAMPLE WITH A LACUNA

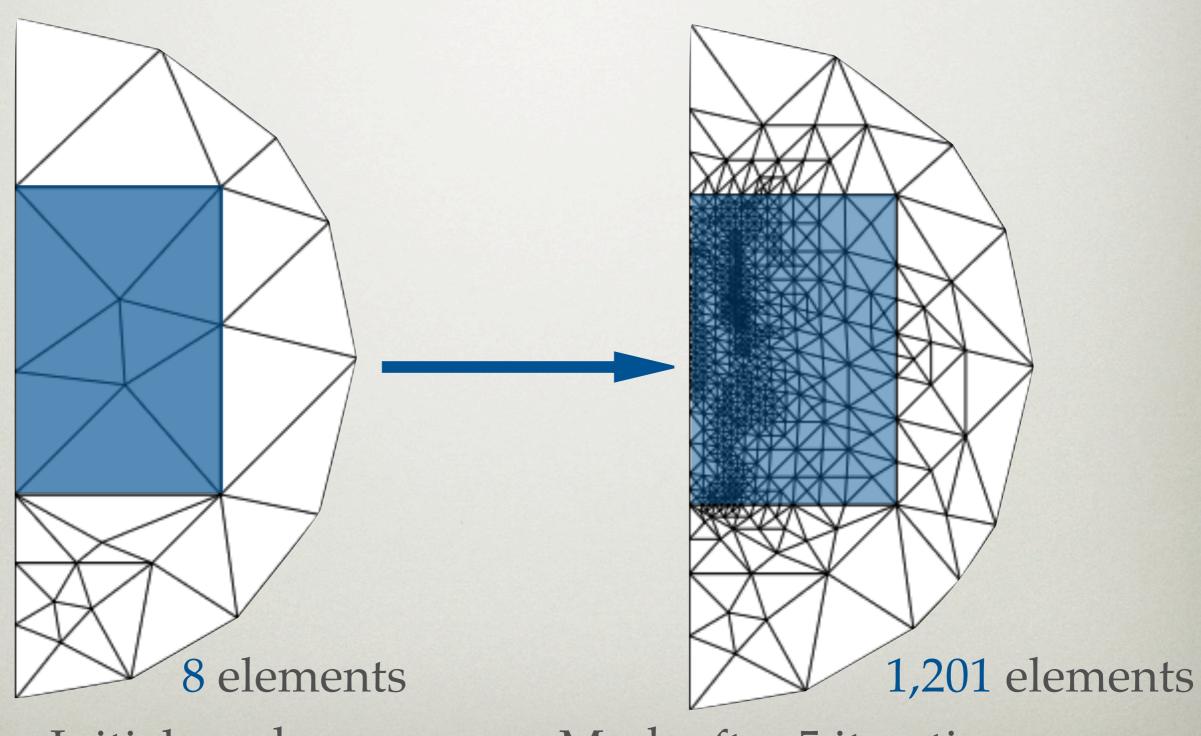


EXAMPLE 1 ON α-IRON: SAMPLE WITH A LACUNA

CIERS



EXAMPLE 1 ON α -iron: Sample with a lacuna

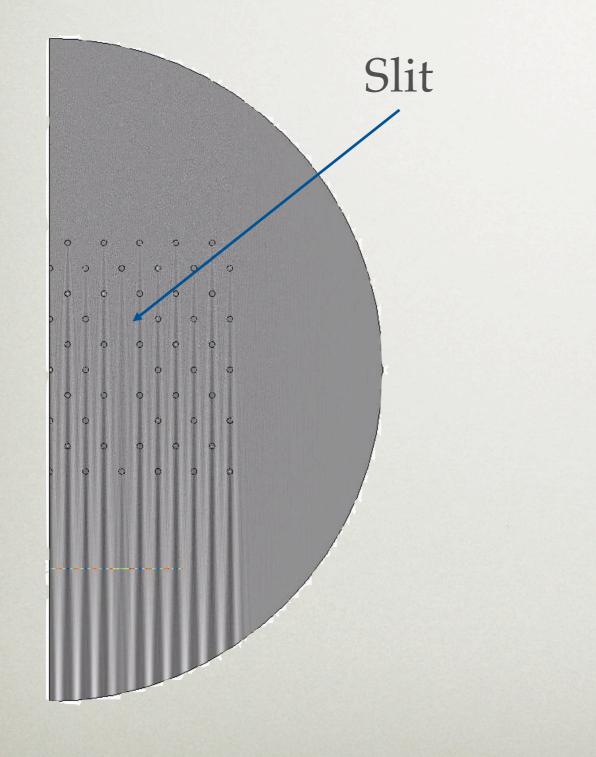


Initial mesh

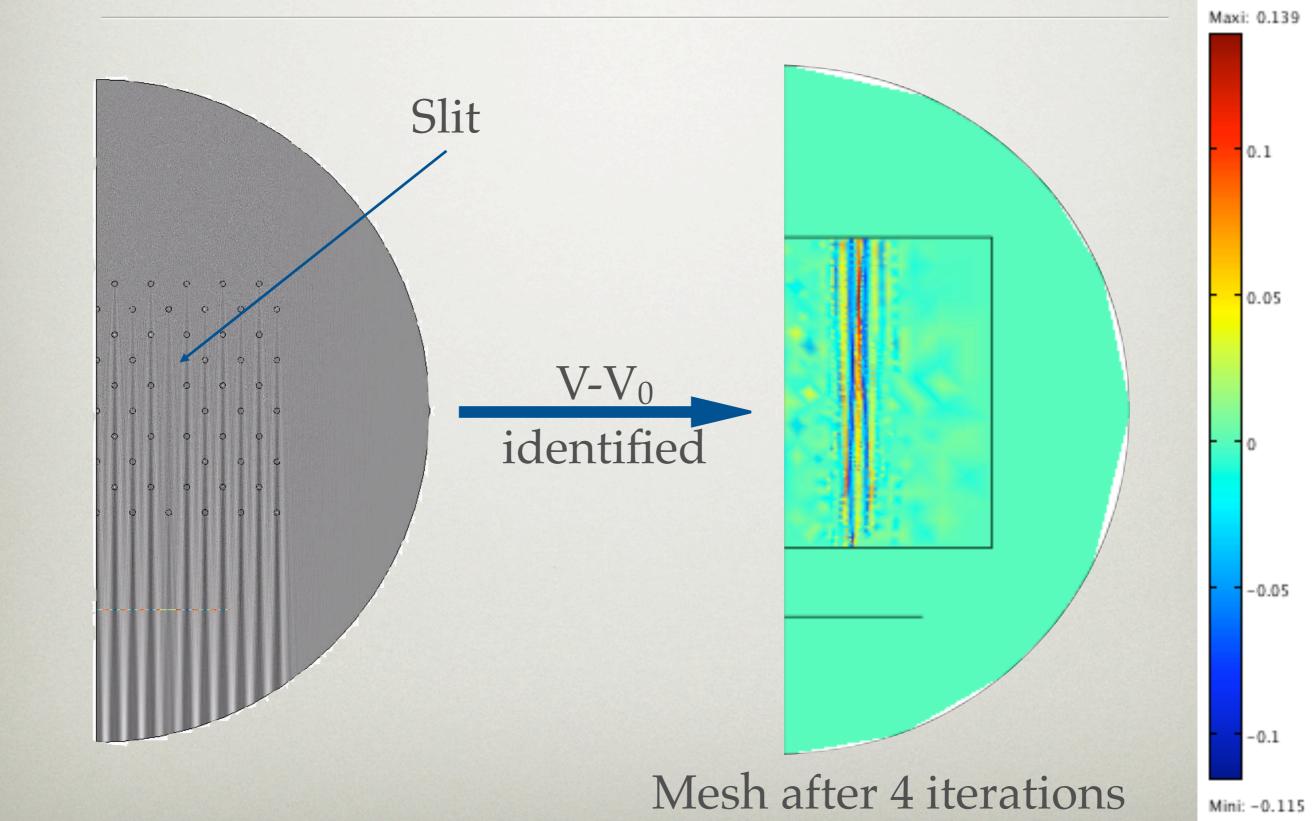
Mesh after 5 iterations

CI

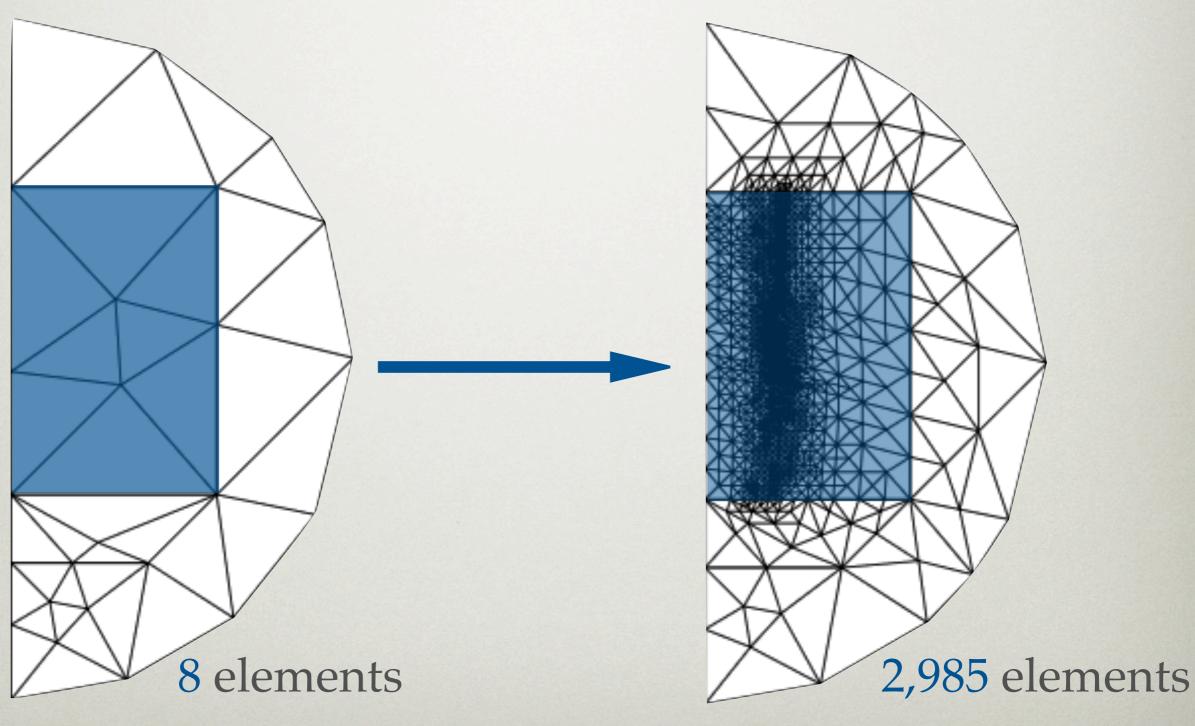
EXAMPLE 2 ON α-IRON: SAMPLE WITH A SLIT



EXAMPLE 2 ON α-IRON: SAMPLE WITH A SLIT



EXAMPLE 2 ON α-IRON: SAMPLE WITH A SLIT



Initial mesh

Mesh after 4 iterations

CONCLUSION

- Summary :
 - iterative resolution of the inverse problem with adaptive regularization
 - first encouraging results
- Prospects :
 - effect of the sample size
 - use of alternative regularization terms

INVERSE ELASTIC SCATTERING WITH ADAPTIVE FE MESHES

D. AUBRY, A.-L. HAMON AND <u>G. PUEL</u> MSSMAT LABORATORY ECOLE CENTRALE PARIS / CNRS UMR 8579

 ψ_i

 $\Sigma_{\rm m}$

 Ω_{e}

TEM FORWARD SCATTERING

- Schrödinger equation for incident electron and sample:
 - Ω_e with boundary Σ_{∞}
 - Sample Ω_s
 - Virtual plane Σ_m

 $-\frac{1}{2}(\Delta_{\mathbf{x}} + \Delta_{\mathbf{x}_s})\psi_{es}(\mathbf{x}, \mathbf{x}_s) + (V_{es}(\mathbf{x}, \mathbf{x}_s) + V_s(\mathbf{x}_s))\psi_{es}(\mathbf{x}, \mathbf{x}_s) = E\psi_{es}(\mathbf{x}, \mathbf{x}_s)$

TEM FORWARD SCATTERING

- Further assumptions:
 - Product of wave functions $\psi_{es} = \psi_e \psi_s$ $-\frac{1}{2} \Delta_{\mathbf{x}} \psi_{(e)}(\mathbf{x}) + V(\mathbf{x}) \psi_{(e)}(\mathbf{x}) = (E - E_s) \psi_{(e)}(\mathbf{x})$
 - Approximation (elastic scattering)

$$-\frac{1}{2}\Delta\psi + V\psi = E_i\psi$$

• Decomposition (incident/diffracted waves) $-\frac{1}{2}\Delta\psi_{i} = E_{i}\psi_{i} \qquad \psi = \psi_{i} + \psi_{d}$ $\frac{1}{2}\Delta\psi_{d} + E_{i}\psi_{d} = V\psi_{i}$

FE COMPUTATIONAL COST

- Helmholtz type equation $\frac{1}{2}\Delta\psi_d + E_i\psi_d = V\psi_i$
- Far field radiation boundary condition

$$\frac{\partial \psi_d}{\partial \mathbf{n}} = \mathbf{i} ||\mathbf{k}_i||\psi_d \text{ on } \Sigma_{\infty}$$

- Estimation of required DOFs
 - 10 elements / wavelength->10⁹ DOFs

 $\frac{\partial \psi_d}{\partial \mathbf{n}} = \mathbf{i} ||\mathbf{k}_i||\psi_d$

PARAXIAL APPROXIMATION

- Paraxial approx: $\psi_d(\mathbf{x}) = \tilde{\psi}_d(\mathbf{x}) \exp(i\mathbf{k}_i \cdot \mathbf{x})$ $\frac{1}{2}\Delta\psi_d + E_i\psi_d = V\psi_i$
 - Helmholtz equation:

$$\frac{1}{2}\Delta\tilde{\psi}_d + \mathrm{i}\mathbf{k}_i\cdot\nabla\tilde{\psi}_d = V\tilde{\psi}_i \text{ in }\Omega_e$$

• Far field boundary condition:

$$\frac{\partial \tilde{\psi}_d}{\partial \mathbf{n}} = \mathbf{i}(||\mathbf{k}_i|| - \mathbf{k}_i \cdot \mathbf{n}) \tilde{\psi}_d \text{ on } \Sigma_{\infty}$$